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Environmental stochasticity refers to unpre-
dictable spatiotemporal fluctuation in environ-
mental conditions. The term is often used in the
literature on ecology and evolution. Unpredictabil-
ity is defined as an inability to predict the future
state precisely such that only its distribution can
be known. The environment is typically defined as
any set of abiotic (e.g. temperature and nutrient
availability) and biotic (e.g. predator, competitor
and food) conditions that organisms experience.
Environmental stochasticity influences how pop-
ulation abundance fluctuates and affects the fate
(e.g. persistence or extinction) of populations. In
an evolutionary timescale, environmental stochas-
ticity also affects the life history strategy of
organisms. Environmental stochasticity is included
in population models using univariate difference
equations, stochastic matrix population models,
stochastic differential equations and partial dif-
ferential equations. Ecological data are analysed
to determine the effect of environmental stochas-
ticity using methods such as spectral analysis,
capture–recapture analysis, state-space analy-
sis, generalised linear models and multivariate
statistical analyses.

Introduction

Environmental stochasticity refers to unpredictable spatiotempo-
ral fluctuation in environmental conditions, affecting biological
processes. Unpredictability is defined as an inability to predict
the state precisely although its distribution may be known. The
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environment is typically defined as any set of abiotic conditions
experienced by organisms, such as temperature, precipitation
and nutrient availability. The environmental conditions fluctuate
over time and space, which in turn directly or indirectly pro-
duce fluctuations in biological processes. These processes include
growth/development, survival, reproduction, individual interac-
tions and other biological processes. Consequently, environmen-
tal stochasticity is reflected in fluctuations in biological states
such as the size or age distribution of individuals, population
abundance, community structure and species distribution. The
stochastic fluctuations in these biotic conditions are also con-
sidered environmental stochasticity from the point of view of
the organisms that interact with the fluctuating biological states
through competition, consumption/predation, mutualism, infec-
tion and other biological interactions.

However, not all environmental fluctuations are stochastic
(DeAngelis and Waterhouse, 1987). Fluctuation can be parti-
tioned into stochastic and deterministic components (Figure 1).
A deterministic process is one which, if understood precisely,
enables future states to be predicted from current and past states.
Daily and annual cycles are examples of predictable fluctuations,
on which some stochastic components are often superimposed.
Determining how much is deterministic or stochastic (thus pre-
dictable or unpredictable) precisely is often impossible. There-
fore, it depends on our knowledge of the underlying processes
and statistical properties of data. When our understanding of the
system is limited, a large part of the fluctuation may be con-
sidered stochastic. Alternatively, models with both deterministic
and stochastic components can be fitted to data to separate them
through statistical model selection processes. Practicality is also a
consideration; in some studies, complete knowledge of the under-
lying processes is not needed because only the distribution of
states is of interest. In such cases, most or all of the mixed fluc-
tuations may be attributed to environmental stochasticity, but it
is important to recognise that observed fluctuations involve both
deterministic and stochastic components.

Other causes of fluctuations in ecological systems include
density-dependent process producing nonlinear dynamics (see
also: Nonlinear Dynamics and Chaos) and species interactions
such as predator–prey interactions (see also: Predation on Ani-
mals). Ecological and evolutionary processes are also affected
by demographic stochasticity (Lande et al., 2003), and ecolog-
ical data are affected by observational errors. Separating these
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Figure 1 Stochastic and deterministic fluctuations: (a) purely stochastic fluctuation, (b) purely deterministic fluctuation, (c) mixture with high stochasticity,
(d) mixture with intermediate stochasticity and (e) mixture low stochasticity.

processes is a challenging part of ecological and evolutionary
research.

In the remainder of this article, characteristics of environmen-
tal fluctuation and potential effects on ecological and evolutionary
systems are described. Then, mathematical models and statistical
methods for the analysis of environmental stochasticity in ecol-
ogy and evolutionary demography are briefly summarised.

Characteristics of Environmental
Fluctuation

Many environmental variables exhibit a mixture of stochastic and
deterministic variations. This often becomes clearer as more data
points are included in a time series (Halley, 1996). Historical
records suggest that both marine and terrestrial environmental
conditions tend to exhibit smooth variation (cyclic deterministic
pattern) on timescales longer than approximately 50 years. How-
ever, over shorter timescales, environmental conditions appear to
be more stochastic. Marine environmental conditions tend to be
less stochastic than those in the terrestrial environment (Steele,
1985). For example, ocean temperature in the North Pacific
exhibits a decadal oscillation (Mantua and Hare, 2002), and this is
thought to be one of the main causes of fluctuations in salmon and
other fish populations in the North Pacific. Furthermore, Vasseur
and Yodzis (2004) showed that terrestrial environmental variables
tend to include a greater stochastic component, increasing with

the distance from coastal areas. This is thought to result from the
decoupling of marine and terrestrial environmental systems over
short timescales due to differences in heat capacity between air
and water. The greater heat capacity of water causes the temper-
ature of marine systems to fluctuate slowly, producing a smooth
pattern in environmental fluctuation.

Effects on Ecological Systems

Effects on population dynamics
Stochastic fluctuations in environmental conditions cause
stochastic fluctuations in population processes (survival, fecun-
dity, growth and development), which, in turn, cause fluctuations
in population states (e.g. abundance, age/stage distribution and
the total reproductive potential of a population). Such fluctuations
increase the uncertainties in the forecasts of future population
states as well as our understanding of the systems. These uncer-
tainties often require us to take precautionary measures in the
harvests of exploited species as well as the conservation of
protected species (Garcia, 1994). Furthermore, stochastic fluc-
tuations in survival and reproductive rates due to environmental
stochasticity reduce long-run population growth rate (Lande
et al., 2003). However, it has been shown that environmental
stochasticity can also increase a long-run population growth rate
if it affects growth or development of individuals (Doak et al.,
2005).
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Figure 2 Diagram depicting the sequence of ‘dry’ and ‘wet’ conditions and the number of viable seeds produced under the corresponding environmental
condition.

Effects on small populations
and population extinction

For populations with small numbers of individuals, the chance of
occurrence of consecutive periods of unfavourable environmental
conditions due to environmental stochasticity can drive a popula-
tion to extinction. This concept is incorporated in a population
viability analysis (PVA; Boyce, 1992; Beissinger and McCul-
lough, 2002). In one of the simplest PVA, termed count-based
PVA, environmental stochasticity is assumed to be the only
source of fluctuation in population abundance, and the probabil-
ity of the population reaching a certain critical threshold level,
termed quasi-extinction threshold, is calculated using a diffu-
sion model (Morris and Doak, 2002). However, this approach has
been criticised on the basis of the difficulty in accurately esti-
mating model parameters (Ellner and Holmes, 2008). See also:
Conservation of Populations and Species

Spatial synchronisation
and environmental stochasticity

Environmental stochasticity can also produce synchronisation in
population dynamics over space. In ecology, this effect is termed
the Moran effect (Moran, 1953). Before the discovery of the
Moran effect, the causes of fluctuation and synchronisation in
population density were considered to be the same: for example,
a large-scale environmental fluctuation causing synchronised
fluctuation over space. However, the Moran effect suggests the
causes of fluctuation and synchronisation can be different. For
example, periodic dynamics caused by predator–prey interaction
at two separate locations can be synchronised by a small amount
of individual exchanges. This synchronisation can also occur
without any exchange of individuals if there is a small amount
of correlated environmental stochasticity affecting the systems
at both places.

Effects on Evolutionary Processes

Environmental stochasticity also plays an important role in the
evolution of life history strategies by affecting the fitness of
organisms. For example, the fluctuation leads to the variation in

the number of offspring, and this variation reduces the geometric
mean of offspring produced over time, which is commonly used
to predict the long-term outcome of evolution (see also: Fitness).
Suppose that there are two types of years, wet and dry, occur-
ring with equal probability, and the annual numbers of offspring
produced are eight and two (the average is five) in wet and dry
years, respectively (Figure 2). If those years come alternatively,
a grandmother has 8× 2 grandchildren after 2 years and the geo-
metric mean is a square root of 16 (i.e. 4), which is the Darwinian
fitness over one generation. It is less than 5, which is the geo-
metric mean of 5× 5 when the average number of offspring is
produced every year without any variation over time (Philippi and
Seger, 1989). In response, organisms have developed strategies to
minimise the fitness reduction in the course of evolution (Gille-
spie, 1974) by diversifying the risk.

Suppose that there are two types of years, A and B, occurring
with equal probability. A plant species reproduces two types of
seeds, type 1 and 2, and the sum of the numbers is 12. Type 1 is
more adaptive for year A than year B, say the survival probabil-
ity is 2/3 in year A and is 1/2 in year B. On the other hand, type
2 is completely reversed. If the plant reproduces only type 1, the
expected numbers of seeds in years A and B are 12× (2/3)= 8 and
12× (1/3)= 4, respectively. However, if the plant produces six
type 1 and six type 2 seeds at the same time, the expected number
of seeds is always 6× (2/3)+ 6× (1/3)= 6. Therefore, the strat-
egy to reproduce both types of seeds gains a larger number (geo-
metric mean is

√
6 × 6 = 6) than the strategy of reproducing only

type 2 seeds (the geometric mean is
√

4 × 8 = 4
√

2) despite the
number of seeds produced being the same. The way to reduce the
variation in yearly fitness using multiple types of seeds is called
germination heteromorphism, and it has been reported by several
botanists (Silvertown, 1984). This concept of diversification of
risk is in an old saying, ‘don’t put all your eggs in one basket’,
and this type of strategy is generally called a bet-hedging strategy.
See also: Life History Theory; Reproductive Strategies

Calculating the geometric mean fitness can be complicated
if variations in the types of environment and/or responses of
organisms are high. It can be estimated using the geometric mean
from time 0 and t of population growth rate:

t

√√√√ t−1∏
k=0

rk =
t

√
Nt

N0

(1)
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where Nt and rt represent population size and the population
growth rate at time t, respectively (see the section titled ‘Stochas-
tic Discrete-time Models’ for the detail). When t approaches
infinity, that is long-term time average, it is called ‘stochastic pop-
ulation growth rate’ (𝜆s) (Cohen, 1977a; Tuljapurkar and Orzack,
1980; Caswell, 2001). The evolution of life history strategies in
a fluctuating environment can be understood by comparing 𝜆s

(Horvitz et al., 2005). The strategy with the highest 𝜆s is the opti-
mal strategy in a fluctuating environment.

Optimal strategies are also influenced by deterministic com-
ponents of environmental fluctuation. For example, most organ-
isms are adapted to cope with daily and/or annual environmental
fluctuations. However, the relative importance of deterministic
and stochastic components on life history evolution is uncertain
(Orzack and Tuljapurkar, 2001). This uncertainty results partially
from the challenges in its empirical determination. First, it is dif-
ficult to determine the amount of environmental fluctuation that
is stochastic (unpredictable) for the organisms of interest, as it
can be different from the stochasticity that is perceived by human
observers. Second, environmental fluctuation differs depending
on the spatiotemporal scale of the environment that affects organ-
isms. For example, long-lived organisms are buffered against
short-term fluctuations, so high-frequency fluctuations appear to
be irrelevant to their life history evolution. However, it may be
that such organisms evolved to have a long life span in response to
the short-term environmental fluctuations. Thus, from an evolu-
tionary standpoint, short-term fluctuations are an important factor
determining the life history strategy.

Mathematical Models

There are four basic models to describe the population dynamics
under stochastic environment, depending on the presence of inner
structure within populations and the discreteness of time. The
discrete-time model without inner structure is described using
a difference equation with respect to population size, that is a
stochastic discrete-time model. The continuous-time model with-
out inner structure is an application of a stochastic differential
equation (SDE). The discrete-time model with population struc-
ture is a stochastic matrix population model. The continuous-time
model of a structured population is an application of partial dif-
ferential equation (PDE). These models are described briefly.

Stochastic discrete-time models
A stochastic discrete-time model for geometrically growing
unstructured populations is called the Lewontin–Cohen model
(Lewontin and Cohen, 1969), and it takes the form of a simple
difference equation with stochastically fluctuating per capita pop-
ulation growth rate. Suppose that the population size increases
by a rate rt at each time step:

Nt+1 = rtNt (2)

where Nt is the population size at time t and rt gives the population
growth rate between time t and t+ 1. Equation (2) is the simplest
difference equation with stochasticity when we assume the per

capita population growth rate is independent of the population
size but depends on environmental conditions. Environmental
stochasticity affects the per capita population growth rate so that
population size also fluctuates stochastically. Assuming that the
population size at time 0 is N0, then eqn (2) is solved as follows:

Nt = N0

t−1∏
k=0

rk (3)

By obtaining the natural logarithm of both sides of eqn (3) and
by applying algebraic manipulations, we obtain

log

(
Nt

N0

)
=

t−1∑
k=0

log rk (4)

The trajectories of log(Nt/N0) are drawn in Figure 3, starting
from a unique initial value, N0. Each trajectory fluctuates at
every time step due to environmental fluctuation and the width
of the variation increases with time. If rt exhibits white noise
fluctuation, then the following relationship is derived by applying
the central limit theorem:

log

(
Nt

N0

)
∼ Normal(t log 𝜆s, t𝜎

2) (5)

where log 𝜆s and 𝜎2 are the mean and variance of log(rt) (Cohen,
1977b; Tuljapurkar and Orzack, 1980). In other words, the natural
log of relative population size at time t is normally distributed
with mean t log 𝜆s and variance t𝜎2. Therefore, the mean and
variance increase linearly with time t (Figure 3). It should be
noted that neither rt nor log(rt) needs to be normally distributed
for eqn (5) to be valid asymptotically.

log(Nt/N0)
0

T
im

e

Figure 3 Sample paths of logarithm of population size. Each solid line
represents the sample path starting from the unique initial value. The thick
lines are the normal distribution with mean t log 𝜆s and variance t𝜎2. The
distribution expands with time.
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Stochastic matrix population models
Stochastic matrix population models are discrete-time models for
stage-structured populations. In deterministic matrix population
models, life history parameters (survival rates, reproductive rates
and the rates of transitions among stages) are incorporated into
a projection matrix (see also: Discrete Analysis (Matrix Mod-
els)). The <i,j> element of a projection matrix At is the per capita
rate of contribution of stage j to stage i. Typically, the first row is
for reproduction; therefore, the first row of the jth column is the
fertility rate of individuals in stage j. Other parameters are the
transition rates of individuals from stage j to stage i between time
t and t+ 1. This matrix is used to project a vector of stage-specific
abundance as

nt+1 = Atnt (6)

where nt is a vector whose components are the abundance of indi-
viduals in different stages. In the deterministic model, At =At+1.
In order to incorporate environmental stochasticity in the model,
the elements of the projection matrix At are stochastically varied
over time. Once the projection matrices are determined, associ-
ated statistics can be calculated, including asymptotic population
growth rate, stable stage distribution, and their sensitivities to
changes in the mean and variance of population parameters (Tul-
japurkar, 1982; Tuljapurkar et al., 2003).

Stochastic population growth rate (𝜆s) in stochastic matrix
population models is calculated using the limit of the geometric
mean over t years, similarly to eqn (1) in the section titled ‘Effects
on Evolutionary Processes’, as

log 𝜆s = lim
t→∞

1
t

log
Nt

N0

= lim
t→∞

1
t

log

{‖‖At−1At−2 · · ·A0n0
‖‖‖n0‖
}
(7)

where ||x|| is the element-sum of a vector x (Tuljapurkar and
Orzack, 1980; Heyde and Cohen, 1985). In conservation biology
and evolutionary demography, it is used to evaluate whether the
long-term growth rate of a population in question exceeds 1 or
not and allows us to examine the effect of fluctuating environ-
ment on the population dynamics. A formula for calculating 𝜆s

and its sensitivity to the mean and variance of vital rates when
the environmental stochasticity is serially autocorrelated can be
found in Tuljapurkar and Haridas (2006).

Stochastic differential equation (SDE)
models
SDE adds stochasticity in an ordinary differential equation
(Higham, 2001). For example, the exponential growth model is
given as

dN(t)
dt

= rN(t) (8)

where r and N(t) represents the intrinsic growth rate of population
and the population size at time t. This is the simplest and most
famous model in mathematical biology termed the Malthusian
equation. If r is affected by a stochastically fluctuating environ-
ment, then eqn (8) becomes

dN(t) = rNdt + 𝜎NdB (9)

where dB is an iid stochastic term with mean 0 and variance 1, that
is white noise fluctuation. The second term of the right-hand side
of eqn (9) represents the stochastic term, the so-called Brownian
motion. SDEs, such as eqn (9), can be calculated using one of
two methods: Ito or Stratonovich integral (Higham, 2001). With
the Stratonovich integral, the natural log of N(t)/N(0) is normally
distributed with the mean tr and variance t𝜎2 (Øksendal, 2013).
Note that r is equivalent to log 𝜆s in the Lewontin–Cohen model.

A system of SDEs can be used to model more complex bio-
logical processes. For simple linear situations, the solutions to
the SDE models can be found analytically using a transfer func-
tion method (Nisbet and Gurney, 1982). However, simulations are
often required when equations are nonlinear. Simulation of SDE
models requires great care because it is possible to derive differ-
ent solutions depending how the integrals are calculated (Higham,
2001).

Partial differential equation models
PDE is a differential equation with multiple independent vari-
ables and contains partial derivatives with respect to them. It is
closely related to the above two models: SDEs and stochastic
matrix population models. When a population is structured by
‘size’ of individuals such as biomass, folk length and diameter at
breast height (DBH), then the independent variable that structures
a population is continuous (as opposed to finite discrete cate-
gories). PDE models handle it by including the structural param-
eter as another independent variable. Suppose P(x, t) denotes a
density distribution of size x at time t, the dynamics are described
as follows:

𝜕P(x, t)
𝜕t

= −𝜕G(x)P(x, t)
𝜕x

− M(x)P(x, t) (10)

where G(x) and M(x) are growth rate and mortality rates of indi-
viduals with size x, respectively. This equation is known as the
Von Foerster equation (Sinko and Streifer, 1967; de Roos, 1997).
If the growth rate, G(x), varies because of fluctuating environ-
ment, the dynamics equation is a second-order PDE, adding a
diffusion term to eqn (10):

𝜕P(x, t)
𝜕t

= 1
2
𝜕2D(x)P(x, t)

𝜕x2
− 𝜕G(x)P(x, t)

𝜕x
− M(x)P(x, t) (11)

where G(x) and D(x) are the first and the second moments of
G(x), respectively. When we assume zero-mortality rate, this
equation is generally known to have the same form as the for-
ward Kolmogorov diffusion equation or Fokker–Planck equation
(Goel and Richter-Dyn, 2016). If G(x) has white noise fluctu-
ation around the mean gx with the variance 𝜎2x2, then G(x) =
[g + (𝜎2∕2)]x and D(x)= 𝜎2x2. The solution, P(x, t), of eqn (11)
is generally difficult to obtain analytically and the numerical
solution is calculated using the appropriate discretisation along
independent variables. The numerical calculation again requires
a great care for discretisation, that is the increments of time (Δt)
and size (Δx). Equation (11) can be viewed as the size-continuous
version of matrix population models. The relationship between
matrix population models and PDEs are discussed explicitly in
Takada and Hara (1994).
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Statistical Analysis

Statistical methods for the analysis of population data affected
by environmental stochasticity can be classified into five general
categories: (1) conducting spectral analysis and fitting autore-
gressive moving average (ARMA) models, (2) fitting state-space
models, (3) capture–recapture analysis, (4) regressions and
related analyses and (5) multivariate statistical analysis. These
approaches are briefly outlined and references are provided.

Spectral analysis and fitting
autoregressive moving average (ARMA)
model

When long time series are available, a periodogram, correlogram
and partial autocorrelogram can be plotted (Diggle, 1990). A peri-
odogram is a plot of relative importance (vertical axis) of different
frequencies (horizontal axis) in a time series, and it tells us what
frequencies are represented in the data. A correlogram shows
the correlation (vertical axis) between time series and its own
time-lagged values plotted against the amount of the time-lag.
Finally, a partial autocorrelogram is similar to the correlogram
except that it controls for the correlation at shorter time-lags.
These three types of figures can be used for characterising the sta-
tistical properties of time series, and the analysis is called spectral
analysis.

Once the spectral analysis is done, an ARMA model can be
fitted to data (Diggle, 1990). ARMA models are continuous-state
discrete-time models in which a state at time t is expressed in
terms of the past states and the stochastic component of the
fluctuation:

Xt =
p∑

k=1

at−kXt−k + Zt +
q∑

k=1

bkZt−k (12)

where Xt is the state (which may be an environmental state, or an
ecological state such as population abundance) at time t, Zt is an
iid random variable with mean zero and finite variance, and the
integer values p and q are the orders of autoregressive and moving
average processes of the model, respectively. These orders can be
determined based on the results of the spectral analysis. ARMA
models together with spectral analyses are particularly useful
when trying to statistically characterise stochastic fluctuation in
time series data when the underlying processes are not well
known. Once fitted to the data, the ARMA model can be used for
simulating time series that have the same statistical characteristics
as the original data or for predicting future states.

State-space model

State-space models (Harvey, 1989) are statistical models that
include a deterministic process, a stochastic process (i.e. process
error) and stochastic observational errors. By fitting the model
to time series data, it allows us to partition the fluctuations in
the data into those three components (Dennis et al., 2006). This
approach is used in ecological studies to analyse time series,
such as counts of individuals, catch per unit effort and transect

data. It has been applied to fishery data (Schnute, 1994) as
well as data from protected species as a part of PVA (Lindley,
2003). Recently, combining ARMA and state-space models, a
vector autoregressive state-space method was developed. This
model, for example can incorporate species interactions under
environmental stochasticity (Ives et al., 2003).

Capture–recapture analysis
Capture–recapture analysis estimates the survival rate from indi-
vidual capture histories (Lebreton et al., 1992), and it can be
used for estimating the effect of environmental stochasticity on
vital rates. There are two basic approaches. If the observation of
a stochastically fluctuating environmental condition is available,
then it can be incorporated into the model as a covariate. Alter-
natively, survival rate can be estimated for each time step, and
variation in the mean estimates can be attributed to the effect of
environmental stochasticity. The advantage of capture–recapture
analysis is that, by default, it separates observational errors in the
estimations and that they estimate survival rates directly rather
than inferring them from changes in population density.

Regression models and related methods
Generalised linear models (McCullagh and Nelder, 1989) and
related regression methods are the most common approaches to
analyse the time series data in ecology. The method requires
observation of the dependent variable (e.g. count of individu-
als) and independent variables (e.g. fluctuating environmental
conditions), and their associations are determined statistically.
Practically, it assumes that a large part of the environmental
stochasticity, if any, can be explained by the independent vari-
ables. Although it is simple, it suffers from two major prob-
lems: colinearity among variables (Knape and de Valpine, 2011)
and nonstationarity of the time series (Bence, 1995, Pyper and
Peterman, 1998; Zhou et al., 2016), both of which can cause
spurious statistical inference. To overcome these issues, partial
least squares regression for overcoming colinearity (Garthwaite,
1994) and cointegration for overcoming nonstationarity (Engle
and Granger, 1987) can be applied.

Multivariate statistical analysis
When multiple population data and multiple environmental data
are collected, multivariate statistical analyses can be applied.
For example, various factor analyses (Manly, 2005) are applied
to population data and environmental data, and statistical asso-
ciation between them can be analysed. An advantage of this
approach is that, when short but many time series are available,
underlying patterns in the data can be found using multivariate
statistical analysis (Fujiwara and Mohr, 2009). However, the pat-
terns found under multivariate statistical methods may or may
not be relevant biological processes. Consequently, this type of
analyses tends to be explorative.
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