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Individual organisms are affected by various natural and anthropogenic environmental factors throughout their life
history. This is reflected in the way population abundance fluctuates. Consequently, observed population dynamics are
often produced by the superimposition of multiple environmental signals. This complicates the analysis of population
time-series. Here, a multivariate time-series method called maximum autocorrelation factor analysis (MAFA) was used to
extract underlying signals from multiple population time series data. The extracted signals were compared with
environmental variables that were suspected to affect the populations. Finally, a simple multiple regression analysis was
applied to the same data set, and the results from the regression analysis were compared with those from MAFA. The
extracted signals with MAFA were strongly associated with the environmental variables, suggesting that they represent
environmental factors. On the other hand, with the multiple regression analysis, one of the important signals was not
identifiable, revealing the shortcoming of the conventional approach. MAFA summarizes data based on their lag-one
autocorrelation. This allows the identification of underlying signals with a small effect size on population abundance
during the observation. It also uses multiple time series collected in parallel; this enables us to effectively analyze short
time series. In this study, annual spawning adult counts of Chinook salmon at various locations within the Klamath
Basin, California, were analyzed.

Throughout their life history, individual organisms in a
population experience various natural and anthropogenic
environmental conditions, and the fluctuations in those
conditions are reflected in the fluctuations in population
abundance. In addition, observed population dynamics are
also affected by observational errors. Consequently, fluctua-
tion in population-abundance time series is produced by the
superimposition of multiple signals of different sources.
This type of complexity makes it difficult to identify the
signals in the population time series. Nevertheless, one of
the most important objectives in population ecology is to
identify the factors affecting population dynamics (Coulson
et al. 2001), and one of the most common data types
available in ecology is the time series of abundance.

The superimposition of multiple signals is common in
ecological population studies, but analytical methods to
handle it are still limited. This limitation results mainly
from two statistical problems. First, because population
time series are often short, the power of statistical analysis is
low. The low power prevents us from fitting complex
mechanistic models that include multiple processes. Sec-
ond, typical regression and related analyses focus on trying
to explain the variance of population time series in terms of
environmental variables. This does not allow us to identify
environmental factors that had small effects on population
abundance during a sampling period. However, the

seemingly insignificant environmental factors during a
sampling period could become important in the future if
dominant environmental factors switch. Therefore, failure
to identify the environmental factors that had a small effect-
size on population fluctuation will reduce our ability to
predict future population abundance.

In the present analysis, a multivariate time-series method
called maximum autocorrelation factor analysis (MAFA,
Solow 1994) was applied to the multiple population
abundance time series. MAFA is one of the approaches
that use multiple time series collected in parallel. This
alleviates the problem associated with the shortness of time
series. MAFA also extracts signals that have high lag-one
autocorrelations (i.e. smooth signals, Solow 1994) rather
than high variances. This increases a chance to identify the
signals that had a small effect size on population abundance.
The use of lag-one autocorrelations is especially suitable for
ecological population analyses because population time
series often have a positive autocorrelation (Pimm and
Redfearn 1988, Inchausti and Halley 2001). The auto-
correlation can result from environmental variables, which
tend to have positive autocorrelations (Vasseur and Yodzis
2004, Ripa and Ives 2007, Fujiwara 2008a), and the life-
history strategy of the organism, which can reinforces the
positive autocorrelations (Discussion). MAFA takes advan-
tage of these characteristics and extracts environmental
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signals from population data (Supplementary material
Appendix 1).

In order to demonstrate the utility of MAFA, the
technique was applied to the time series of the spawning
Pacific salmon abundance (escapement) measured at differ-
ent locations within the same river basin. Using MAFA, we
extracted underlying signals that are common among the
locations as well as those specific to particular locations.
These signals were then further analyzed by comparing
them with various indices that represent environmental
conditions thought to affect the dynamics of Pacific salmon.
We focused our study on explaining the fluctuation in
population abundance of Pacific salmon within the same
river basin. Because all of the time series represent the
same species and their life history is known, the study is
specific about the timing of population processes and
environmental events (Supplementary material Appendix
2). This allowed us to gain further insights into the
associations between population abundance and environ-
mental variables.

Although MAFA is not new to ecology (Solow 1994,
Erizini 2005, Fujiwara 2008b), it has rarely been used
compared with other statistical methods. Therefore, our
main objective of this study was to reemphasize its
advantages in population ecology. In this study, we also
analyzed the same data set with a multiple regression
analysis, which is one of the most common statistical
methods used to associate population time series and
environmental variables. Comparing the results from the
regression analysis with those from MAFA, we demonstrate
the shortcoming of the multiple regression analysis and
strengths of MAFA.

Data and methods

Abundance of fall-run Chinook salmon

The analysis is based on the annual adult escapement (age 3,
4 and 5) of fall-run Chinook salmon. As described in Groot
and Margolis (1991) and Quinn (2005), this species
exhibits an indeterminate semelparous life history. Fall-
run Chinook salmon in the Klamath Basin return from the
ocean to their natal rivers for spawning between August and
November each year. The age of maturity varies between 2
and 5 years old, but most individuals return at age 3 or 4.
After spawning, the adults die. Their offspring emerge from
the gravel during winter and spring, and after rearing for a
short period of time in freshwater, they migrate to the ocean
during the summer and fall of the same year and spend one
to four years at sea. The fishery-take occurs during their
immature stages in the ocean as well as during their
spawning upstream migration.

The data were obtained from six locations in the
Klamath River and its major tributaries along with one
time-series representing the total escapement at some other
smaller tributaries over the period 1978 to 2006 (Fig. 1).
Although some males mature at age 2, the analysis does not
include them. The abundance of spawning adults at each
tributary was estimated with various methods including
redd (nest) counts, mark�recapture of carcasses, and direct
counts using video cameras (KRTAT 2001�2007). These

data are available from the Pacific Fishery Management
Council (/<www.pcouncil.org>).

A recent decline in the abundance of this population led
to the near-complete closure of Chinook salmon commer-
cial fisheries off the coast of California and Oregon in 2006.
However, the cause of the decline in the population
abundance is not well understood. Pacific salmon tend to
return to their natal streams for spawning. However,
depending on the spawning stream, the timing of their
upstream migration, egg hatching and downstream migra-
tion varies (Quinn 2005). Furthermore, some rivers in the
study area are affected by regulated water flow due to dams,
but others are not. This is also expected to cause responses
to the environmental factors to vary among the locations
(e.g. individuals spawning in some locations are more prone
to ocean than stream conditions and vice versa).

The fisheries affecting Klamath River fall-run Chinook
are annually regulated based on their forecasted current
abundance, and the harvest goal is set proportional to the
predicted number of available fish in most years (Pacific
Fishery Management Council 2009). As expected from the
management procedure, the total escapement abundance of
fall-run Chinook salmon to the basin is significantly
positively correlated with the fishery landing data (unpubl.).
Consequently, we assume that the observed short-term
fluctuation in the escapement is not caused by the fisheries.
However, the short time period for which data are available
means that it is important not to extend this assumption
when explaining the longer-term fluctuation.

The escapement data are plotted in Fig. 2. Escapements
at Trinity River (Fig. 2a), Bogus Creek (Fig. 2e), and the
Klamath main-stem (Fig. 2f) currently contribute the most
to the total natural area escapement within the Klamath
Basin, and the variability in the Trinity River escapement
alone constitutes more than 75% of the variance in the total
escapement of naturally spawning fall-run Chinook salmon.
However, in this analysis, instead of examining the
contribution of each tributary to the Basin escapement,
we focused on the difference in the signals among these
time-series data. Therefore, in the subsequent analyses, the
escapement data at each location were standardized by
subtracting their mean and dividing by their standard
deviation.

Environmental indices

To identify associations between salmon escapements and
various environmental conditions that can potentially affect
the vital rates (growth, survival, maturation, and reproduc-
tive output) of salmon, four types of indices that represent
river and ocean conditions were selected based on existing
literature on salmon population dynamics. The environ-
mental conditions represented by the indices are river flow
rate (NRC 2004, Richter and Kolmes 2005), rate of coastal
upwelling (Botsford and Lawrence 2002, Scheuerell and
Williams 2005, Wells et al. 2006), hatchery returns, and
fishery harvest. These indices are listed in Table 1 and
briefly described in Supplementary material Appendix 2. All
the environmental variables considered in this analysis have
positive lag-one correlation, which provided additional
motivation for the use of MAFA in this analysis.
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Our preliminary analysis also included Pacific Decadal
Oscillation index (Mantua et al. 1997), which is a regional-
scale measure of ocean temperature in the North Pacific.
However, this index is strongly negatively correlated with
the spring coastal upwelling index and the coastal upwelling
is expected to have more direct effect on salmon population
dynamics (Supplementary material Appendix 2). Therefore,
we excluded this index from the final analysis.

Statistical analysis

Maximum autocorrelation analysis
To extract smooth signals, we applied maximum autocorre-
lation factor analysis (MAFA, Solow 1994) to the escapement
time-series data. MAFA is similar to principal component
analysis (PCA) in that both methods find weighted linear
combinations of the original variables to express new
variables that are uncorrelated with each other. However,
while PCA finds new variables whose variances are max-
imized, MAFA finds new variables whose lag-one autocorre-

lations are maximized. Because a smooth signal generally has
a high lag-one autocorrelation (Diggle 1990), MAFA
identifies new variables that emphasize smooth trends. After
standardizing the original escapement data at each location
by subtracting its mean and dividing by its standard
deviation, the maximum autocorrelation factors (MAFs)
were estimated using the algorithm presented by Solow
(1994). Let X̃

(j)

t be the standardized jth time-series of the
population counts. Then, similarly to PCA, the ith MAF is
expressed as a linear combination of the population counts as

Y(i)
t �a1;iX̃

(1)

t �a2;iX̃
(2)

t � � � ��am;iX̃
(m)

t (1)

where m is the number of available time series. The
coefficients aj;i are estimated by taking the eigenvalue
decomposition of the scaled cross lag-one difference matrix
(Solow 1994). The sign of the maximum autocorrelation
factors were chosen so that they would correlate positively
with the total escapement. After obtaining the MAFs, each
MAF was standardized by dividing by its standard deviation.

Figure 1. Map of the Klamath Basin, California, USA.
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Let Ỹ(i)
t be the standardized ith MAF. Then, X̃

(j)
t can be

expressed in terms of Ỹ(i)
t as

X̃
(j)

t �b1;jỸ
(1)

t �b2;jỸ
(2)

t � � � ��bm;jỸ
(m)

t (2)

By convention in factor analysis, bi;j is called the loading of
the jth variable on the ith factor. Because both X̃

(j)
t and Ỹ(i)

t are
standardized, b2

i;j gives the proportion of variance in the jth
variable explained by the ith factor. Finally, the significance
of the lag-one autocorrelation of MAF was tested using a one-
tailed Bartlett test (Diggle 1990) with a significance level a of
0.05. Only significant MAFs were retained in subsequent
analyses as follows:

X̃
(j)

t :b1;jỸ
(1)

t � � � ��bk;jỸ
(k)

t (3)

where k (k5m) is the number of significant MAFs.
To determine the associations between the MAFs (/Ỹ

(i)

t )
and environmental factors, correlations between the MAFs
and the indices listed in Table 1 were calculated. Because
the MAFs are the weighted linear combinations of the
population data, the year associated with them corresponds
to the spawning year. On the other hand, the environmental
factors affect salmon before spawning, and they have
delayed effects on the spawning abundance depending on
which life stage is actually affected. Therefore, the years for
MAFs and the environmental variables were lagged to
match the years of environmental variable and affected
spawning abundance (Table 1, Supplementary material
Appendix 2).

Multiple regression analysis

The same data set used in the MAFA was also subjected to a
multiple regression analysis. In this analysis, each of the
seven spawning abundance time series was used as a
dependent variable, and environmental variables were
used as independent variables. This was repeated for all of
the spawning abundance time series. For the escapement at
the Trinity River, river flow rate of the Trinity River,
hatchery escapement abundance at the Trinity River
Hatchery, and all of the coastal upwelling indices were
used as independent variables. For the escapements at the
other locations, river flow rates of the Klamath River, the
hatchery escapement abundance at the Iron Gate Hatchery,
and all of the coastal upwelling indices were used. In
addition, the total spawning abundance within the basin
was regressed against all of the environmental variables. In
order to select the independent variables, a forward stepwise
regression analysis was used (p-values of 0.05 for inclusion
and 0.10 for exclusion).

Results

Maximum autocorrelation factor analysis

Maximum autocorrelation factor analysis revealed three
signals (three maximum autocorrelation factors) that have
significant lag-one autocorrelation (pB0.05). Hereafter,
these factors are denoted as MAF 1, MAF 2 and MAF 3 in
the order of decreasing lag-one autocorrelation. In other
words, these factors are the weighted linear combination of
the spawning escapement data in the order of decreasing
smoothness, and these factors are expected to represent
underlying environmental fluctuations. The three factors
are shown in Fig. 3. The variance of the spawning

Figure 2. Escapement of fall-run Chinook salmon at (a) Trinity
River, (b) Salmon River, (c) Scott River, (d) Shasta River, (e)
Bogus Creek, (f) Klamath River main-stem, and (g) other
tributaries combined. In each panel, dots are the raw data, and a
smooth curve indicates a twice-applied three point moving
average.
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escapement at each location explained by these three factors
is: Trinity River (62%), Salmon River (72%), Scott River
(41%), Shasta River (61%), Bogus Creek (28%), Klamath
River main stem (97%), and other tributaries combined
(85%).

Association between MAFs and environmental

indices

The three significant MAFs were analyzed further by
correlating them with the environmental variables with
various time lags. Potential pitfalls of correlation analysis
between two serially autocorrelated time series are discussed
in Supplementary material Appendix 3. Figure 4 depicts the
correlations between the types of the environmental indices
and the MAFs. The figure includes those indices with a
correlation coefficient magnitude greater than 0.32 with at
least one of the two MAFs in each panel (corresponding to a

significance level of a�0.1). The environmental indices are
plotted in Supplementary material Appendix 2.

MAF 1 is associated with the spring coastal upwelling
indices (Table 2, Fig. 4). The timing of correlated spring
coastal upwelling index and MAF 1 (i.e. time lags of 2�4
years) suggested that coastal upwelling during immediately
before spawning of the parents of affected cohorts and/or
during early life stage of the cohorts themselves in the ocean
affects the population.

MAF 2 is associated with fall coastal upwelling. The
latter association is apparent from the high correlations
between MAF 2 and the fall coastal upwelling indices

Table 1. Environmental variables. Sampling interval is annual. See Supplementary material Appendix 2 for descriptions of the variables.

Variable Description Year

CUM coastal upwelling index, May 1974�2002 1975�2003 1976�2004
1977�2005 1978�2006 *

CUJ coastal upwelling index, June 1974�2002 1975�2003 1976�2004
1977�2005 1978�2006 *

CUS coastal upwelling index, September 1975�2003 1976�2004 1977�2005
CUO coastal upwelling index, October 1975�2003 1976�2004 1977�2005
RKF river flow rate, mean between 1 Oct and 31 Dec, Orleans 1974�2002 1975�2003 *
RKW river flow rate, mean between 1 Jan and 31 Mar, Orleans 1974�2002 1975�2003 *
RKS river flow rate, mean between 1 Apr and 30 Jun, Orleans 1974�2002 1975�2003 *
RTF river flow rate, mean between 1 Oct and 30 Dec, Hoopa 1974�2002 1975�2003 *
RTW river flow rate, mean between 1 Jan and 31 Mar, Hoopa 1974�2002 1975�2003 *
RTS river flow rate, mean between 1 Apr and 30 Jun, Hoopa 1974�2002 1975�2003 *
IGH iron Gate hatchery returns 1978�2006 * *
TRH trinity River hatchery returns 1978�2006 * *
HAV harvest, all fisheries 1986�2006 * *

Figure 3. Maximum autocorrelation factors. Dots show resultant
linear combinations of original escapement data, and a smooth
curve indicates a twice-applied three point moving average.

Figure 4. Correlations between MAFs and various environmental
indices. k: fall coastal upwelling index; �: spring coastal
upwelling index; �: fall river flow; ^: spring river flow; I:
hatchery escapement. Only variables with correlation �0.32 in
magnitude with at least one of the two MAFs in each panel are
shown. This level of correlation corresponds approximately to a
significance level of 0.10.
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(Table 2, Fig. 4). Interestingly, MAF 2 also shows a
significant positive correlation with hatchery returns (Fig. 4),
suggesting that hatchery fish are also regulated by the same
factor.

MAF 3 is mainly associated with the spring river flow
rate measures (Fig. 4b). The river flow rate and the
escapement data at most locations have negative serial-
autocorrelations with lags of 4�6 years, which are evident
from the apparent cyclic signals in MAF 3 (Fig. 3c), the
river flow data (Supplementary material Appendix 2), and
the escapement data (Fig. 2). The latter suggests a strong
coherence between escapements and river flow at this
frequency. MAF 3 may also be associated with fall coastal
upwelling during the early years of ocean residence (Fig.
4b). This suggests that MAF 3 may be a mixture of two
environmental variables that were not completely separated
by MAFA (Supplementary material Appendix 1).

Grouping of river tributaries

Fig. 5 shows the factor loadings (/bi;j in Eq. 3) on the three
MAFs used to express the natural area spawning escapement
time-series (/Ỹ

(i)

t ; Fig. 1). These factor loadings indicate the
relative importance of the MAFs to explain the signals in
the escapement time-series. Because the analysis above
suggested that MAF 1, MAF 2 and MAF 3 are primarily
associated with spring coastal upwelling, fall coastal upwel-
ling, and river flow rate, respectively, we refer to the three
factors accordingly in this section. The loadings suggest that
the spring coastal upwelling factor (MAF 1) is important for

most locations with the possible exception of Bogus Creek;
however, the sign of the association with the escapements
differs with the locations. On the other hand, the fall coastal
upwelling factor (MAF 2) is the most important factor in
explaining the signals at the Klamath River main-stem, and
it is also significantly loaded for the Bogus Creek and Scott
River escapaments. Finally, the river flow rate factor (MAF
3) appears to be important in explaining the observed
signals at all locations except the Klamath River main-stem.

The Klamath River and its tributaries are affected by
various environmental factors resulting in distinct popula-
tion dynamics at each location. Based on the association
between the escapements and the three estimated factors
(Fig. 5), we have categorized the seven tributaries into four
groups. The first group includes the Trinity River, Salmon
River, Scott River, and the other smaller tributaries, which
are primarily correlated with both spring coastal upwelling
factor and the river flow rate factor. The second is the
Shasta River, which is also affected strongly by the spring
coastal upwelling and river flow rate factors, but it has a
negative correlation with the spring coastal upwelling factor.
The third is the Klamath River main-stem, which is
primarily affected by the fall coastal upwelling factor and
negatively correlated with the spring coastal upwelling
factor. The fourth is Bogus Creek, which exhibits similarity
with the hatchery escapements (cf. Fig. 2 and Supplemen-
tary material Appendix 3, Fig. 3). However, the variability
in escapements at Bogus Creek and the Scott River are
explained least by the three maximum autocorrelation
factors, which suggests that an additional environmental
factor that has small lag-one autocorrelation or sampling
variation may be affecting the escapement data at these
locations.

Multiple regression analysis

The environmental variables selected by the forward
stepwise regression analyses are listed in Table 3. The result
suggests that all of the spawning escapement time series
except the Salmon River and Scott River escapements are
associated with coastal upwelling indices. Furthermore, the
Trinity River, Scott River, Shasta River, and Bogus Creek
escapements are associated with hatchery escapements.
However, differently from the MAFA result, the multiple
regression analysis concludes that none of the escapement
time series is associated with a river flow rate measure,
suggesting that the river flow rate signal is hidden behind
other signals.

The total natural-area escapement (all of the escape-
ments combined) is associated with the Trinity River
hatchery escapement and a coastal upwelling index. These
are two of the variables that are also associated with the

Figure 5. Loadings of the spawning escapements on the three
MAFs (TR: Trinity River; SA: Salmon River; SC: Scott River; SH:
Shasta River; BO: Bogus Creek: KM: Klamath River main-stem;
OT: Other tributaries combined). The loadings were scaled by
multiplying by the standard deviation of the corresponding
maximum autocorrelation factor.

Table 2. Environmental variables that are the five most correlated with each of the three maximum autocorrelation factors (MAFs).

MAF 1 MAF 2 MAF 3

Variable (correlation coefficient) CUJ, 1974�2002 (�0.62) CUO, 1977�2005 (0.74) RTS, 1974�2002 (0.47)
CUJ, 1975�2003 (�0.55) CUS, 1975�2003 (0.57) RKS, 1974�2002 (0.46)
CUJ, 1976�2004 (�0.54) TRH (0.44) CUO, 1975�2003 (�0.39)
CUJ, 1977�2005 (�0.38) CUO, 1976�2004 (0.42) RKW, 1974�2002 (0.34)
CUM, 1976�2004 (�0.37) CUS, 1977�2005 (0.39) CUS, 1976�2004 (�0.33)
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escapement at the Trinity River alone. This is consistent
with the facts that the variance of the total escapement can
be explained mostly by the variance of the Trinity River
escapement and that multiple regression analysis selects
independent variables that explain the variance of a
dependent variable.

Discussion

MAFA as a tool in population analysis

The principal technique used in this study was maximum
autocorrelation factor analysis (MAFA), which treats the
data as multivariate time-series and extracts smooth signals
from them. The technique takes advantage of the fact that a
population at different locations may share some common
environmental factors but are affected by different amounts.
MAFA was particularly effective in identifying the factors
affecting the salmon escapements. As anticipated prior to
the study, the results suggest that the river condition and
coastal upwelling are the important factors affecting the
escapement abundance. We also found that the hatchery
escapements co-vary with natural-area escapements at some
locations. On the other hand, the multiple regression
analysis failed to identify the river condition as a potentially
important environmental factor. The difference in the
results originates from the fundamental difference in the
two statistical approaches. MAFA tries to find underlying
smooth signals, whereas a multiple regression analysis tries
to select independent variables that explain the variance of a
dependent variable.

MAFA is particularly suitable for the analysis of
population data. First, environmental signals, which affect
population processes, tend to have positive lag-one auto-
correlation (i.e. they are not purely random). Second, the
life-history strategy of organisms can act as a smoothing
mechanism. For example, a change in survival probability at
one time can affect the population abundance at more than
one sampling occasion. Thereby, the environmental signal
is smoothed in population data; it is equivalent to applying
a low-pass filter. This enhances our ability to extract
environmental signals using MAFA. Third, population

time-series are often affected by sampling errors. However,
they tend to have a small lag-one autocorrelation and are
expected to be included in insignificant MAFs. Finally, long
time-series are often not available for population analysis.
However, MAFA utilizes the information collected in
parallel. This allows the extractions of environmental signals
from the data that otherwise cannot be analyzed by other
signal processing methods such as Fourier transform and
wavelet analyses.

On the other hand, MAFA is not suitable for extracting
serially uncorrelated signals. Such signals may become
important if organisms are short-lived relative to sampling
intervals and the environmental factors affecting the
population are serially uncorrelated. In this case, other
techniques such as principal component and maximum
likelihood factor analyses (Manly 2005) and dynamic factor
analysis (Zuur et al. 2003) may be useful.

Pyper and Peterman (1998) caution that correlation
analysis between autocorrelated time-series can induce
spurious statistical association (type I errors) and suggest
the use of a small significance level. In our analysis, both
MAFs and environmental signals have a positive lag-one
autocorrelation. In fact, the positive autocorrelation is the
characteristic of time series that we took advantage of in our
analysis. In Supplementary material Appendix 3, we
demonstrated that, when time-series consist of multiple
signals (i.e. ‘noisy time-series’), correlation analysis tends to
fail to identify the true associations (increased type II
errors). Consequently, we recommend selecting environ-
mental variables carefully based on the prior knowledge of
organisms and examining the relative value rather than the
magnitude of correlation coefficients (Supplementary ma-
terial Appendix 3).

In the present study, we took advantage of the spatial
structure within a population. Such data may not be
available for all populations. However, other types of
structure such as stage structure could be used. For example,
if the same population is sampled at different develop-
mental stages, the data from different stages could be
treated as multivariate time-series data. Such an analysis is
advantageous in that one could effectively remove sampling
errors, which are expected to have a small lag-one
autocorrelation, from the data. Extracted signals could
then be examined to investigate the effects of environmental
factors on the different stages. This approach would
potentially allow us to determine the affected stage.

Klamath fall-run Chinook salmon

The main objective of this paper is to demonstrate the
advantages of MAFA in the hope that the results will
encourage other studies using MAFA in the future.
However, we also believe that the results from our example
analysis deserve some discussion. Klamath fall Chinook
have experienced both intensive fishing and extensive loss
and degradation of suitable freshwater habitat (Myers et al.
1998, NRC 2004). Furthermore, Pacific salmon popula-
tions are generally thought to be affected by ocean
conditions as well (Mantua et al. 1997, Koslow et al.
2002, Mueter et al. 2002, Logerwell et al. 2003, Scheuerell
and Williams 2005, Wells et al. 2006, Zabel et al. 2006).

Table 3. Results from multiple regression analysis. Significant
independent variables were selected by the forward step-wise linear
regression. See text for more detail.

Population data Environmental variables

Trinity River CUM, 1976�2004
CUS, 1977�2005
TRH

Salmon River *
Scott River IGH
Shasta River CUJ, 1974�2002

CUJ, 1977�2005
CUS, 1977�2005
CUO, 1976�2004
IGH

Bogus Creek IGH
Klamath River CUS, 1975�2003

CUO, 1977�2005
Other tributaries CUO, 1975�2003
Total basin escapement CUS, 1977�2005

TRH
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The fact that there are many potential causes of fluctuations
in escapement counts exacerbates the difficulties in under-
standing salmon population dynamics.

Our analysis revealed three signals in the escapement
data. Based on the estimated loadings on the MAFs (/b̂i;j);
we categorized the tributaries into four groups. The under-
lying mechanisms producing these differences are still not
clear. However, one potential explanation is the variation in
timing of juvenile downstream migration, which can
produce variations in the effects of environmental factors.
Another possible explanation is the difference in spatial
locations. For example, locations adjacent to hatcheries may
tend to be affected more by stray hatchery-origin fish (Fig.
1). Regardless of the actual underlying processes, if the
differences do result from the differential effects of
environmental factors, these subgroups might profitably
be considered as sub-units for management purposes,
allowing for management at a finer geographic scale.

Cross-correlation analysis between the MAFs and en-
vironmental indices showed a number of strong associa-
tions. First, MAF 1 is associated with spring coastal
upwelling indices. Wells et al. (2006) demonstrated that
spring coastal upwelling affects the individual size of
returning adult salmon in a tributary of the Smith River,
which is adjacent to the Klamath Basin. The results in the
present study suggest that spring coastal upwelling may also
affect the cohort strength of their offspring. The higher the
rate of spring coastal upwelling, the more productive the
ocean becomes. This in turn affects the food availability for
the fish. Consequently, the spring coastal upwelling
strongly influences the energetics of salmon in general.
We speculate that spring coastal upwelling during their
early ocean life primarily affects the growth and survival
of individuals while the spring coastal upwelling during
their later ocean life primarily affects their reproductive
condition.

Second, MAF 2 is associated with the fall coastal
upwelling indices as well as the escapements of hatchery
fish. Food availability in the fall may be an important factor
affecting the winter survival of salmon in the ocean. Why
this factor (but not the other factors) is associated with
hatchery escapement is less clear. Further studies to explain
or falsify the association are clearly needed.

Finally, MAF 3 is associated primarily with the river
flow indices. MAF 3 and many of the river flow rate
measures have negative serial-autocorrelations with lags of
4�6 years (i.e. a cyclic signal). Interestingly, similar
autocorrelations are observed in the river flow rates at the
Smith River and Redwood Creek, whose watersheds are
adjacent to the Klamath Basin (unpubl.). Because these two
streams are free-flowing (unaffected by dams), this similar-
ity indicates that the autocorrelations are naturally occur-
ring phenomena. Crozier and Zabel (2006) recently
presented evidence suggesting that river width and tem-
perature are two important factors determining the survival
of juvenile Chinook salmon in the Salmon River Basin,
Idaho. It is plausible that the survival of juveniles rearing
within the Klamath Basin is also affected by these river
conditions.

Salmon population dynamics are often explained by
Ricker-type models, which exhibit over-compensatory
density dependence. The cyclic signal observed in the

escapement data is approximately the generation time of
Chinook salmon. Thus, another possible explanation for
such a signal is the over-compensatory density dependence
process. However, the result from the present study suggests
that it is likely to be caused by a similar signal in the
environmental condition. This also suggests the difficulty of
identifying density dependence from observed population
dynamics.

The multiple regression analysis, on the other hand, did
not suggest the importance of river conditions on the
salmon population dynamics. This is simply because the
fluctuation in the river flow rate did not contribute
significantly to the variance of the escapement abundance
time series during the sampling period. However, this does
not imply that the river conditions do not affect the
population dynamics. In fact, we were able to isolate the
river flow rate trend from the same data using MAFA.
Therefore, if we ignore the effect of river conditions in the
future population management, we may encounter sur-
prised changes in the population abundance when the river
conditions are changed drastically. This highlights the
danger of examining the variance of data alone.

Caveats in interpretations

In the analysis presented above, we selected several indices
to represent environmental conditions that have been
previously proposed to affect salmon populations. The
significant statistical associations support some of the
previously proposed processes; however, while this is an
important first step toward understanding the underlying
mechanisms, we still do not understand the details of these
processes.

Although our analysis indicates the importance of river
flow in terms of salmon abundance, in representing this
particular environmental condition, we used only the mean
river flow rates for portions of the year at selected locations. It
is likely that a more important measure, which has a more
direct effect on the vital rates of salmon, involves other
aspects of the river flow characteristics, timing, and/or
location (Hilborn et al. 2003). Our approach was based on
the idea that the degree of correlation between such a measure
and our environmental indices would be sufficiently strong
within a broad category (e.g. river flow) that we would be able
to detect the association between salmon abundance and the
environmental condition. The same logic was used in
determining the other environmental indices.

Similarly, we did not include other potentially important
measures of environmental conditions such as oxygen
content, nutrient concentration, amount of vegetation,
water temperature, and rainfall, or the timing of these
events, which may show strong correlation with some of our
measures. These factors may affect the vital rates of salmon
more directly than some of the factors assessed in the present
study. As a result, the findings presented in this paper should
be considered carefully to avoid over-interpretation.

The caveats described above, however, are the limitations
of statistical analysis in general. To become confident about
a cause-and-effect relationship, we have to obtain multiple
pieces of evidence of different kinds that all support the
relationship or we have to obtain multiple pieces of
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evidence of the same kind under a wide range of conditions
(Cox and Wermuth 2004). Therefore, despite the limita-
tions, we believe the results from a statistical analysis like
the one presented in this paper along with our prior
knowledge of biological processes provide important pieces
of evidence toward understanding the true processes.
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